Enzyme therapy in mannose receptor-null mucopolysaccharidosis VII mice defines roles for the mannose 6-phosphate and mannose receptors.
نویسندگان
چکیده
Enzyme replacement therapy (ERT) is available for several lysosomal storage diseases. Except for Gaucher disease, for which an enzyme with exposed mannosyl residues targets mannose receptors (MR) on macrophages, ERT targets primarily the mannose 6-phosphate receptor (MPR). Most recombinant lysosomal enzymes contain oligosaccharides with both terminal mannosyl and mannose 6-phosphate residues. Effective MPR-mediated delivery may be compromised by rapid clearance of infused enzyme by the MR on fixed tissue macrophages, especially Kupffer cells. To evaluate the impact of this obstacle to ERT, we introduced the MR-null mutation onto the mucopolysaccharidosis type VII (MPS VII) background and produced doubly deficient MR-/- MPS VII mice. The availability of both MR+/+ and MR-/- mice allowed us to study the effects of eliminating the MR on MR- and MPR-mediated plasma clearance and tissue distribution of infused phosphorylated (P) and nonphosphorylated (NP) forms of human beta-glucuronidase (GUS). In MR+/+ MPS VII mice, the MR clearance system predominated at doses up to 6.4 mg/kg P-GUS. Genetically eliminating the MR slowed plasma clearance of both P- and NP-GUS and enhanced the effectiveness of P-GUS in clearing storage in kidney, bone, and retina. Saturating the MR clearance system by high doses of enzyme also improved targeting to MPR-containing tissues such as muscle, kidney, heart, and hepatocytes. Although ablating the MR clearance system genetically is not practical clinically, blocking the MR-mediated clearance system with high doses of enzyme is feasible. This approach delivers a larger fraction of enzyme to MPR-expressing tissues, thus enhancing the effectiveness of MPR-targeted ERT.
منابع مشابه
Glycosylation-independent targeting enhances enzyme delivery to lysosomes and decreases storage in mucopolysaccharidosis type VII mice.
Enzyme-replacement therapy is an established means of treating lysosomal storage diseases. Infused therapeutic enzymes are targeted to lysosomes of affected cells by interactions with cell-surface receptors that recognize carbohydrate moieties, such as mannose and mannose 6-phosphate, on the enzymes. We have tested an alternative, peptide-based targeting system for delivery of enzymes to lysoso...
متن کاملRTB Lectin: a novel receptor-independent delivery system for lysosomal enzyme replacement therapies
Enzyme replacement therapies have revolutionized patient treatment for multiple rare lysosomal storage diseases but show limited effectiveness for addressing pathologies in "hard-to-treat" organs and tissues including brain and bone. Here we investigate the plant lectin RTB as a novel carrier for human lysosomal enzymes. RTB enters mammalian cells by multiple mechanisms including both adsorptiv...
متن کاملChemically modified beta-glucuronidase crosses blood-brain barrier and clears neuronal storage in murine mucopolysaccharidosis VII.
Enzyme replacement therapy has been used successfully in many lysosomal storage diseases. However, correction of brain storage has been limited by the inability of infused enzyme to cross the blood-brain barrier. The newborn mouse is an exception because recombinant enzyme is delivered to neonatal brain after mannose 6-phosphate receptor-mediated transcytosis. Access to this route is very limit...
متن کاملEvaluation of pathological manifestations of disease in mucopolysaccharidosis VII mice after neonatal hepatic gene therapy.
Mucopolysaccharidosis VII (MPS VII) is a lysosomal storage disease caused by beta-glucuronidase (GUSB) deficiency. Intravenous injection of a retroviral vector expressing canine GUSB into neonatal MPS VII mice resulted in transduction of 6 to 35% of hepatocytes, which secreted GUSB into blood. Serum GUSB activity was stable for 6 months at 600 (low expression) to 10,000 (high expression) U/ml, ...
متن کاملLiver-directed neonatal gene therapy prevents cardiac, bone, ear, and eye disease in mucopolysaccharidosis I mice.
Mucopolysaccharidosis I (MPS I) due to deficient alpha-L-iduronidase (IDUA) activity results in accumulation of glycosaminoglycans in many cells. Gene therapy could program liver to secrete enzyme with mannose 6-phosphate (M6P), and enzyme in blood could be taken up by other cells via the M6P receptor. Newborn MPS I mice were injected with 10(9) (high dose) or 10(8) (low dose) transducing units...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 103 41 شماره
صفحات -
تاریخ انتشار 2006